O.P.JINDAL SCHOOL, SAVITRI NAGAR PERIODIC TEST -I (Round-1) (2024-25)

CLASS-XI SUBJECT-PHYSICS MAX.MARKS-20 **MAX.TIME-1HOUR**

General	In	stru	ction	:-

- (i)All questions are compulsory .There are 11 questions in this question paper with internal
- S

choice.			
(ii) SECTION – A: Question numbers 1 to	6 are MCQs, carrying 1 mark each.		
(iii) SECTION –B: Question numbers 7 to each.	10 are short answer questions carrying 2 marks		
(iv) SECTION –C: Question numbers 9 and 11 are long questions carrying 3marks each. SECTION-A			
(a) M L^2 T ⁻³ A ⁻¹	(b) M L^2 T^{-3} A^{-3}		
(c) $M L^3 T^3 A^{-2}$	(d) M L^{-1} T^3 A^2		
Q2. The numbers 3.845 and 3.835 on round	ing off to three significant figures will be		
(a)3.85 and 3.84	(b)3.84 and 3.83		
(c)3.85 and 3.83	(d)3.84 and 3.84		
Q3. A particle located at $x=0$, at time, $t=0$	start moving along positive x-direction with a		
velocity v that varied as $v = \alpha \sqrt{x}$. The	displacement of the particle varied with time as		
(a) $t^{1/2}$	(b) t^3		
(c) t^2	(d) t		
	wo particles A and B are straight lines inclined at is. What is the ratio of the velocities V_A : V_B ?		
$(a)\sqrt{3}:1$	(b) $1:\sqrt{3}$		
(c)1:√2	$(d)\sqrt{2}:1$		
Q5. If $x = a + bt + ct^2$, where x is in metre	and t in second, then what is the unit of 'c'?		
(a)m/s	(b)kg/s		
$(c)m/s^2$	$(d)m^2/s$		
Q6. A man goes from A to B at V ₁ speed at average speed of man is	nd returns from B to A at V_2 speed , then the		
, , , , , , , , , , , , , , , , , , ,			

- (a) $\frac{V_1 + V_2}{2}$
- (c) $\frac{V_1 + V_2}{2V_1 V_2}$

SECTION-B

Q7. In the relation $P = \left(\frac{a}{b}\right) e^{-ax/\theta}$, P is pressure, x is distance, and θ is the temperature. What is the dimension of a and b.

OR

Derive an expression among various physical quantities for centripetal force acting on a particle to mass 'm' moving with a velocity 'V' in a circle of radius 'R'.

- Q8. A body covers one-third of its journey with speed 20m/s, next one-third with speed 30m/s and the last one-third with speed 40m/s. Calculate the average speed of the body during the entire journey.
- Q9 .Convert 50J into erg using principle of homogeneity.
- Q10. Write the unit and dimension of following physical quantities.
 - (i)Electric potential
 - (ii)Torque

SECTION-C

- Q11. A balloon is ascending at the rate of 14 ms^{-1} at a height of 98 m above the ground when the food packet is dropped from the balloon. After how much time and with what velocity does it reach the ground? Take $g = 9.8 \text{ms}^{-2}$.
- Q12. The velocity of a particle is given by the equation, $V = 2t^2 + 5$ ms⁻¹. Find
 - (i)the change in velocity of particle during the time interval between t_1 = 2s and t_2 =4s.
 - (ii)the average acceleration during the same interval
 - (iii) the instantaneous acceleration at t = 4s

OR

The acceleration of a particle in ms^{-2} is given by , $a=3t^2+2t+2$, where t is in second . If the particle start with a velocity $V=2ms^{-1}$ at t=0, then find the velocity at the end of 2 second.